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In  this paper we consider the transient evolution of a swirling, recirculating flow in 
a truncated cylinder. In particular, we consider an initial time period during which 
the evolution of the flow is controlled by inertia. Such flows exhibit a mutual 
interaction between the swirl and the poloidal recirculation, whereby any axial 
gradient in swirl alters the recirculation, which, in turn, redistributes the swirl. This 
interaction may be visualized as a flexing of the poloidal vortex lines, the best known 
example of which is the inertial wave. Physical arguments and numerical experiments 
suggest that, typically, a strong, oscillatory recirculation will develop. We examine 
the exchange of energy between the swirl and recirculation, and show that the 
direction of transfer depends on the relative signs of $ and au,/az. In  addition, there 
is a limit to the amount of energy that may be exchanged, since conservation of 
angular momentum imposes a lower bound on the kinetic energy of the swirl. The 
characteristic reversal time for the recirculation is estimated by considering the 
history of fluid particles on the endwalls. Its magnitude depends on the relative 
strengths of the swirl and recirculation. When the recirculation is large, the reversal 
time exceeds the turn-over time for a poloidal eddy and, consequently, the vort,ex 
lines accumulate a t  the stagnation points on the endwalls. This leads to accelerated 
local diffusion on the axis. An elementary one-parameter model is proposed for these 
nonlinear oscillations. In the limit of very weak recirculation, this model is consistent 
with the exact solution for inertial waves, while for strong recirculation, it confirms 
that the reversal time is greater than the turn-over time, and that the vortex lines 
accumulate on the axis. 

1. Introduction 
Suppose that we have a cylinder in which, a t  time t = 0, fluid is given a non- 

uniform swirl distribution. This could be achieved by, say, the impulsive action of a 
body force. What occurs subsequently ? Ultimately, of course, the fluid is brought to 
rest by the action of viscosity. However, we shall show that there is a time period 
during which shear is ineffective, and yet the flow field exhibits some interesting 
features, such as a strong, oscillatory recirculation. 

There are many industrial processes involving swirling fluid, and a number of these 
occur in cylindrical containers. Stirred chemical mixing vessels, cyclone separators, 
combustion systems and the magnetic stirring of molten metals are just a few 
examples. While there have been many detailed numerical and experimental studies 
of such flows (see Gupta, Lilley & Syred 1984), theoretical analyses tend to fall into 

t Present address : Westinghouse Research and Development Center, 1310 Beulah Road, 
Pittsburgh, PA 15235, USA. 
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one of six categories: (i) flows that consist of a small perturbation about a state of 
rigid-body rotation, such as inertial waves (see Greenspan 1968); (ii) steady flows 
involving relative rotation between a viscous fluid and one or more discs, with or 
without cylindrical sidewalls (Batchelor 1951 ; Greenspan 1968; Dijkstra & van 
Heijst 1983, and many others) ; (iii) vortex breakdown (Hall 1967 gives a review) ; 
(iv) steady, axisymmetric, inviscid flows in which the distribution of energy and 
angular momentum between streamlines may be specified a t  some upstream point 
(see Batchelor 1967 for a general discussion and Bloor & Ingham 1987 for its 
application to cyclone separators) ; (v) centrifugal instabilities and Taylor vortices 
(see, for example, Howard & Gupta 1962 and Drazin & Reid 1981); (vi) steady, 
viscous, concentrated vortex cores (Lewellen 1962 and Hall 1967). 

One class of flows which have not been studied extensively are unsteady, inviscid, 
swirl flows with a strong recirculation. These involve a complex interaction between 
the swirl and the recirculation and it is this which is the subject of the present paper. 
Such flows are relevant to, for example, the electromagnetic stirring of molten metal. 

Electromagnetic stirring is a widespread industrial process whereby molten metal 
is homogenized by the application of a rotating magnetic field. This field induces an 
azimuthal body force which, in turn, produces swirl in the melt (Davidson & Hunt 
1987). One recent trend has been to apply the magnetic body force in an intermittent 
fashion, whereby the melt is spun up first in one direction and then in the other. 
Between successive reversals in the body force there is a dormant period, during 
which the melt is allowed to spin under the action of its own inertia (Kojima et al. 
1983). In  such cases it is important to know whether a secondary recirculation 
develops, as this dominates the mixing processes within the melt. 

Typically, the dormant period t between successive applications of the body force 
is of the order of 5 s. Also, the characteristic rotation rate 52 is - 10 rad/s and the 
Reynolds number R is - lo5. It follows that, in this case, 

1 .4 nt -4 Rt. 

We shall see that this inequality implies that the unforced flow field undergoes a 
substantial evolution, involving a strong, oscillatory recirculation, and that this 
process is dominated by inertia, rather than shear stresses. 

In  this paper we restrict ourselves to axisymmetric, inviscid flow in a cylinder of 
radius R and length 1. (For simplicity, we shall take R and I to be of the same order.) 
The assumption that the flow is inviscid is highly restrictive, since viscosity plays a 
crucial role in the later stages of the evolution of a swirling flow. We must estimate 
at what stage viscosity becomes important. 

There are a t  least three mechanisms by which viscosity ultimately establishes 
control of the flow. In  the first instance, von Karmdn boundary layers are established 
on the endwalls, producing a recirculation with a timescale (see Greenspan 1968) of 

7, - l / ( V Q ) t .  

Simultaneously, a concentrated vortex core starts to form on the axis as the 
secondary flow tries to advect a non-zero angular momentum, r= uor ,  onto the 
centreline. This process is controlled by the stagnation points on the endwalls. We 
shall consider this in more detail in $5.  It is shown there that the diffusion timescale 
in these vortex cores is 

12 

where 7t is the ‘turn-over time’ for the poloidal recirculation. 

7, - ; ( 5 2 ~ ~ ) ~  lln (Lht)l, S2‘ft 4 1, 
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Finally, slow diffusion between streamlines tends to eliminate gradients in angular 
momentum r and azimuthal vorticity w8/r  (Batchelor 1956). This occurs on a 
timescale 

7, - P / V .  

Typically, the fluid viscosity is small, and consequently, the smallest of these three 
diffusion timescales is usually the first, determined by the von Kkmtin boundary 
layers. Consequently, we shall restrict attention to the time period, 

Qt < [wi, where [w = QR2/v.  

We may then neglect the action of viscosity on the flow, except in the boundary 
layers immediately adjacent to the walls. 

2. The governing equations of motion and the coupling of the azimuthal 
and poloidal velocity fields 

We shall use a cylindrical polar coordinate system ( r , 6 , z ) ,  where r d R and 
0 < z < 1. It is convenient to  separate the velocity u and vorticity w into azimuthal 
and poloidal components and examine the interaction between them. Thus u8, or 
wp = V x ug, represents the swirling motion, while up, or 0 8  = V x up, represents 
motion in the ( r ,  2)-plane. 

For axisymmetric flow, we may introduce the Stokes stream function @, defined 

up = v x [WIIT) 41.  by 

Noting that up = V x uo, we see that the angular momentum, r = u8r ,  is the 
stream function for the poloidal vorticity. 

The equations of motion for inviscid, swirling flow may be written in the form 

-= 0, 
D r  
Dt 

The quantity w8/r will appear frequently. From Stokes’ theorem, the integral ofw,/r 
throughout any (axisymmetric) volume V is related to the circulation around its 
bounding curve C in the ( r ,  2)-plane. I n  particular, 

(3) 

Equations (1) and (2) show the mutual interaction between the swirling flow, 
represented by r, and the recirculation, represented by w8/r.  Any axial gradient in 
swirl acts as a source of poloidal recirculation, which, in turn, redistributes r. This 
interplay has been extensively explored in the case of steady, viscous flows (see, for 
example, Hall 1967), and we shall be concerned here with its consequences in 
unsteady, inviscid flow. 

Note that ( 1 )  is a direct consequence of Kelvin’s circulation theorem, and may be 
generalized to give 

D 
Gf(4 = 0, (4) 

where f is an arbitrary function o f f .  We shall use this in $6. 
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Spiralling of o, lines - Generation of positive wo 
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Reduction in auo/az 

FIQURE 1. Generation of azimuthal vorticity og by spiralling of the wp lines; 
and consequent advection of the w, lines. 

The source term in (2) may be rewritten as IV x (u, x op)l, representing a spiralling 
of the poloidal vortex lines by u,. This is the mechanism by which the swirl generates 
azimuthal vorticity, and the process is illustrated in figures 1 (a) and 1 (b ) .  Note that 
differential rotation is required for this, as otherwise the op lines lie parallel to the 
axis and rotate without distortion. 

Now suppose that a t  time t = 0, we have a positive axial gradient in swirl, but no 
recirculation, as shown in figure 1 (a) .  Then a positive value of wg will be swept out, 
as described above. This is consistent with (2) and is associated with the poloidal 
velocity field up shown in figure 1 (c). This poloidal velocity will, in turn, advect the 
poloidal vortex lines in accordance with (l) ,  since f is the stream function for op. The 
result is a tilting of the wp lines as shown in figure 1 (d) ,  causing a reduction in the 
axial gradient of uo. 
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However, as a result of the inertia of the fluid, the advection of the wp lines will 
persist, even after the axial gradient in uo is eliminated. The result will be a reversal 
in the gradient of the wp lines, associated with a negative value of au,/az. This, in 
turn, will force a reduction in we in accordance with (2), and the entire process is then 
reversed. 

This sequence of events provides a physical mechanism by which oscillations may 
occur. These may be visualized as a 'flexing' of the poloidal vortex lines, and one 
manifestation of this is the inertial wave, which is a small-amplitude oscillation that 
may be superimposed on any x-independent swirl flow, uo = V ( r ) .  (See, for example, 
Drazin & Reid 1981.) 

To investigate possible oscillations, we must look at the second-order convective 
derivative of wo. From (2) we may show that 

where @ = ( l /r3)  (ar2/ar) is Rayleigh's discriminant, and J = r3 (a/&) (ur/r3). 

to give the well-known equation 
In the case of inertial waves, we may linearize this about the base flow uo = V ( r )  

(5 )  

This may be solved to give the natural fre uencies and normal modes of the standing 
waves, the former being of the order of @%. Note that Rayleigh's criterion for stable 
axisymmetric oscillations is @ 0. 

These inertial waves cannot readily be interpreted in terms of the Coriolis force, 
except for the case of rigid-body rotation. However, they may be visualized as the 
oscillation of otherwise parallel poloidal vortex lines, as described above. 

4 

3. Numerical sirnuladon of a swirling flow 
In order to illustrate the comments of the preceding section, it is useful to consider 

the following numerical experiment. Suppose that, at time t = 0, we specify a non- 
uniform swirl distribution, given by, say, 

r = Qr2{ 1 + $[ 1 - ( r /R)a]  cos (m/Z)}, (6) 

where 52 is a constant. In addition, we shall take the initial recirculation up to be zero. 
We shall follow the evolution of this flow using a finite-difference code, described 

in Davidson & Hunt (1987). This code solves the Navier-Stokes equations, subject 
to the no-slip boundary condition, using a quadratic upwind interpolation scheme. 
The Reynolds number was set at lo6, although, in practice, any specified viscosity is 
inevitably augmented by 'numerical diffusion'. The parameters Q, R and 1 were 
given values of 1 radls, 1 m and 2 m respectively. No special effort was made to 
maintain accuracy in the boundary layers as the primary interest was in the initial, 
inviscid flow. 

Figure 2 ( a )  shows the poloidal recirculation a t  times t = 2 , 6  and 10 8. Clearly, the 
poloidal eddy oscillates back and forth, oo being first negative, then positive and then 
negative again. The time required for each reversal of the eddy is 7, = 4.1 s, and the 
maximum magnitude of up is approximately 0.29 m/s. Thus the recirculation is of 
the same order as the initial swirl. 
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FIGURE 2. Computed evolution of a swirling flow. (a) Poloidal recirculation at t = 2, 6 and 10 s. 
fb)  Poloidal vortex lines a t  t = 0, 4 and 8 s. 

As the recirculation oscillates back and forth, i t  carries with it the angular 
momentum r. This may be illustrated by examining contours of constant r, that is, 
the poloidal vortex lines. These are shown in figure 2 ( b )  for times t = 0, 4, and 8 s. 
The up lines are successively compressed a t  either end of the cylinder, depending on 
the sign of wg. We shall discuss this in more detail in 95, where the computations are 
compared with a simple analytical model of the oscillations. 

Figure 3 shows the flow generated by the initial swirl distribution, 

r = Qr*{ 1 + [ 1 - (r/R)2] cos (7Cz/Z)}. (7) 

In this case the initial gradient in swirl is larger, and consequently the induced 
recirculation is stronger. Here the reversal time is 7, = 4.4 s, and the maximum 
magnitude of up is approximately 0.50 m/s. 

Note that, in cases where the initial recirculation is zero, such as that above, we 



Swirling and recirculating velocity components in unsteady $ow 41 

I 

rI 0 2  I 

t = 4.5 

t = 9  

t = l O  

FIQURE 3. Numerical experiment of swirling flow with stronger recirculation. (Initial conditions 
given by (7).) (a) Poloidal recirculation, (b )  poloidal vortex lines. 

may calculate the early growth of the poloidal eddy exactly. For small t ,  (2) may be 
linearized to give 

r r4 az ’ 
%=-- t ar; 

where r, is the initial distribution of r. This gives 

from which $ may be calculated. 
The problem of predicting the evolution of such a flow for periods greater than SZ-l 

is that the nonlinear form of (1) and (2) precludes the development of an exact 
analytical solution. Consequently, we shall look a t  the integral properties of these 
flows, to determine what global constraints this places on their evolution. 
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4. Integral properties of the flow 
4.1. Conservation of angular momentum and kinetic energy 

Equation ( 1 )  shows that I‘, the angular momentum, is a materially conserved 
quantity. Let I, be the volume integral of r throughout the flow field, 

Then ( 1 )  implies 

r 

I,= J r d V .  
V 

More generally, (4) shows that , , 

d 
&I‘ = 0. 

Another integral invariant is the total kinetic energy per unit mass, 

E =  +‘dV. Iv 
It is instructive to divide E into E, and E,, the kinetic energies of the azimuthal and 
poloidal velocity fields 

E,  = Jv 
dV,  

P 

E, = d V  = +$(w0/r)  dV. J” J v  
(The latter equality follows from the application of the divergence theorem to 
V . [ ( $ / r )  8, x u,], while noting that $ = 0 on the boundary.) Conservation of energy 
now requires 

d 
dt 
- [E, + EP] = 0. 

We shall consider the exchange of kinetic energy between the azimuthal and 
poloidal velocity fields. Noting that $ = 0 on the boundary, we may use ( 1 )  to show 

-E dt d = - - E  dt , = /“{$}u,.dV = [ve2{g}dV. r 8% r 

Physically, this represents the work done by the poloidal velocity field in moving 
a fluid element radially outwards against the pressure gradient set up by the 
centripetal acceleration. Note that there is no transfer of energy between the two 
velocity fields when the axial gradient in r is zero. This is consistent with the source 
term in (2) being zero. In  general, the direction of transfer of energy depends on the 
relative signs of $ and a r 2 / a z .  In  the example given in $3, $ and a r 2 / a z  are initially 
of the same sign, so that kinetic energy is transferred to the poloidal velocity field. 

Conservation of angular momentum imposes a limitation on the amount of energy 
which may be transferred from u, to up. This may be shown by applying Schwarz’s 
integral inequality to  I ,  

([“TdVY < [vu;dV[vr2dV. 



Swirling and recirculating velocity components in unsteady $ow 43 

Let V = nR21, the volume of the flow field. Then, from the expression above, 

The equality holds if, and only if, uo = Rr, where R is independent of r and z (rigid- 
body rotation). It follows that such a vortex represents a minimum energy state for 
the azimuthal velocity field, for a given angular momentum. 

The angular velocity which gives rise to this minimum value of E, is 

R, = 21F/(R*V). 

For an arbitrary velocity field u,, we may introduce an associated velocity 
u; = u,-R,r, where uh is not, in general, small. Noting that u; contains no net 
angular momentum, we may show that 

which is consistent with (13). The maximum kinetic energy which may be transferred 
between uo and up is therefore 

r P  

which is a constant for the flow. 
Inertial waves may be superimposed, in a stable manner, on any z-independent 

swirl, uo = V(r) ,  provided Rayleigh’s discriminant is positive. For the particular case 
of V ( r )  = Rr, this follows directly from (13); that is, rigid-body rotation represents 
an absolute minimum in E,. More generally, it  may be shown that any z-independent 
swirl, u, = V(r) ,  in which Rayleigh’s discriminant is positive, represents a local 
minimum in E,. This was shown by Moffatt (1986) and it is instructive to  consider 
briefly his analysis. 

Moffatt considers a virtual displacement field q ( x ) ,  which satisfies V q = 0 and 
q - dS = 0 on the boundary, but is otherwise arbitrary. This may be applied to any 
steady-state flow in such a way that the topology of the vortex lines is conserved. 
By this mechanism, we may consider all the possible velocity fields which are 
‘dynamically accessible’ from the steady state by a small change in kinetic energy. 
We shall consider flows in which q(x )  is not small in $5. 

It is not difficult to show that, for the steady flow u, = V(r ) ,  the first- and second- 
order perturbations in velocity (6lu and g2u) which preserve vortex line topology are 

1 
r 

61u* = - - r ( r ) q r ,  

1 
r 

Pup = -r(r)ySt?,.+Vq5, 

Note that these perturbation velocities ensure that #Ir  and S21F are both zero, so 
that angular momentum is conserved. 

The perturbation in kinetic energy may be calculated from these expressions, and 
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it is clear that 6lE is zero (a necessary condition for u, = V(r )  to be a steady state) 
while J2E is given by 

(14) 
PE = S2E,+cY2E = - @ ( r ) q ~ d V + ~ ~ v ~ 6 ’ u p ) 2 d V ,  1 :Iv 

where @(r)  is Rayleigh’s discriminant. 
Moffatt (1986) derived (14), but with the restriction that q, = 0, so that 6luP = 0 

and PEP vanishes. It follows from this equation that the swirl flow u, = V ( r )  
represents a local minimum in E,, provided @ 2 0. Rayleigh’s stability criterion also 
follows, since @ 2 0 is a necessary and sufficient condition for E to be a local 
minimum. 

If these perturbation velocities are substituted into (1) and (2), then we find that 
qr satisfies the well-known inertial wave equation 

4.2. The azimuthal vorticity and reversals in the recirculation 

Let V, be an axisymmetric material volume, with surface S ,  and bounding curve C, 
in the (r,z)-plane. Equations (2) and (3) give 

Let us restrict ourselves to the case where the recirculation takes the form of a 
single poloidal eddy. Then we may use this equation to interpret the oscillatory 
behaviour seen in $3. If we take V, to be V ,  the whole flow field, then the only 
contribution to the surface integral in (16) arises from the end faces of the cylinder. 
Now suppose that a t  time t = 0, r is larger on the face z = 0 than on z = 1. In  
addition, suppose that up is initially zero, as in the example in $3. Then (16) implies 
that a negative recirculation is produced, which will tend to advect the angular 
momentum on the end faces to the corners (R,O) and (0 , l ) .  

During this process E,, the kinetic energy of the recirculation, will increase in 
accordance with (12) since both @ and aui/az are negative. 

However, after one half of the ‘reversal time’, the excess angular momentum at 
(0, 1) will dominate the surface integral in (16), causing it to change sign. A t  this stage, 
the magnitude of w, will start to decrease, and energy will be extracted from the 
poloidal velocity field since $ and aui/az are then of opposite signs. Eventually, a 
positive value of w, will be generated, changing the direction of the recirculation. The 
entire process is now reversed. 

We shall develop an approximate, one-parameter model of this process in $5. 

5. Characteristic times for the reversals in recirculation and for the 
diffusion on the axis 

5.1. Orders of magnitude 
We shall now examine more carefully velocity fields that are ‘dynamically accessible ’ 
from the swirl flow u, = V(r ) ,  in the sense defined in $4.1. That is, velocity fields 
which have the same vortex line topology as ug = V(r), and are accessible from this 
flow by a finite perturbation in the kinetic energy. In particular, we shall look a t  the 
oscillatory advection of the swirl in the ( r ,  2)-plane, as characterized by the distortion 
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FIGURE 4. Necessary boundary conditions for a flow to be dynamically accessible from 
ug = V(r )  by a change in kinetic energy only. 

of the wp lines. We may formally establish that the wp lines are advected by up in the 
( r ,  2)-plane, by noting that r, the stream function for wp, is materially conserved. 

We start by examining the restrictions that the initial boundary conditions place 
on the evolution of the flow. Consider a fluid particle which (initially) lies on the 
boundary. I ts  transverse velocity and acceleration are zero and it cannot pass 
through a stagnation point. Consequently, if it  initially lies on an endwall, it must 
remain on that wall, and if it lies on the surface r = R, it must remain on that surface. 
Therefore, a poloidal vortex line which initially intersects with any of these surfaces, 
must continue to intersect with the same surface(s). 

The flow u, = V(r )  has parallel poloidal vortex lines wz,  which intersect with the 
end faces z = 0 , l .  It follows that the only boundary conditions that are dynamically 
compatible with this flow (in the sense defined above) are ones in which all the 
poloidal vortex lines intersect with, and only with, these faces. Consequently, we 
must restrict ourselves to initial conditions in which r = R is a poloidal vortex line, 
implying that r is constant along this surface. This angular momentum will then 
remain constant on r = R, equal to f, for all t > 0. 

This is not, however, the only initial boundary condition which the flow must 
satisfy. Since Tis  constant on r = R, (2) implies that  Dw,/Dt = 0 on this surface. But 
w, = 0 in the flow u, = V(r ) ,  and consequently we require w, to be zero on r = R a t  
time t = 0. Moreover, on the axis we have w, = 0 (by symmetry) and r = 0 (for finite 
kinetic energy). These boundary conditions are illustrated in figure 4, which shows 
the initial distribution of the wp lines. As the flow evolves, the volume enclosed 
between any two of these poloidal vortex lines remains constant. 

It is interesting to note that the inertial waves and perturbation velocities 
discussed in 54.1. satisfy all these boundary conditions. These inertial waves give 
rise to a standing wave pattern in the poloidal vortex lines, which is illustrated in 
figure 5 .  

We shall now restrict attention to flows in which the recirculation consists of a 
single poloidal eddy. (Note, however, that even if the recirculation starts as a single 
eddy, i t  may subsequently break up into a number of smaller eddies.) When the 
azimuthal vorticity is positive, all the poloidal vortex lines on the end face z = 0 will 
tend to pile up on the axis, while all those on z = 1 accumulate a t  the corner r = R. 
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FIGIJRE 5. Inertial waves generate a standing wave pattern in the 
poloidal vortex lines (ED < Eo).  

3 R 
0 
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I 

FIQURE 6. Accumulation of poloidal vortex lines in the corners (E,  - E,) : (a) wo > 0,  ( b )  we < 0. 

Conversely, if o8 is negative, the vortex lines pile up a t  (R,O) and (0,g. In  either 
case, singularities start to form at the corners and on the axis. This is illustrated in 
figure 6. 

However, in the short term, such singularities cannot develop because they are 
associated with an infinite kinetic energy on the axis. The mechanism by which they 
are avoided is as follows. Suppose that wo is positive, so that the vortex lines start 
to pile up a t  (0,O) and (R,Z). Then 

resulting in a reduction in wo. The presence of the rW4 term in the surface integral 
ensures that this integral is dominated by the growing singularity a t  (0,O). As the 
vortex lines pile up in the corners, this integral will become large and negative. 
Eventually the flow will reverse, causing the vortex lines to move out of the corners 
(0 ,O)  and (R,Z), and into the opposite corners. Clearly, oscillations may develop in 
which the vortex lines alternately accumulate in opposite corners. 
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We might expect that  the degree to which vortex lines accumulate in the corners 
will depend on the relative sizes of the swirl and recirculation. For example, suppose 
that there is a strong recirculation. Then we would expect that, before a reversal in 
w, can occur, there must be a large concentration of poloidal vortex lines in the 
corners. In such a case a small but finite viscosity v could cause appreciable diffusion. 

We may estimate the extent to which the vortex lines pile up in the corners as 
follows. Suppose that (initially) w, is positive, so that the vortex lines start to pile up 
at  ( 0 , O )  and (R, I ) .  Let gP and E,  be the characteristic kinetic energies of up and u,, 
and let a be the characteristic radius of the area (near (0 ,O))  into which the bulk of 
the vortex lines move. For simplicity, we shall take R and I to be of the same order. 

There are three relevant timescales. Let 7, be the characteristic diffusion time in 
the corner (0, 0 ) ,  and 7, be the time taken for the recirculation to reverse, causing the 
vortex lines to move back out of the corners. The third characteristic time is the 
turn-over time of the poloidal eddy, T ~ ,  which is of order w;'. 

We may relate the reversal time 7, to a using (16) : 

The left-hand side of this equation is of order Cj8R2/7,, while the right-hand side is 
dominated by the developing singularity a t  ( O , O ) ,  and is of order r 2 / a 2 .  Equating 
these two estimates, we obtain 

R2a2 
7r7t N -. (17) 

f 2  

We may also determine 7, from the time taken for a fluid particle to move from an 
initial radius r,, (of order R )  to a radius of order a. That is, 

from which, 
Tr - - l n t ) .  
Tt 

Eliminating 7, from (17) and (18), and relating T~ to Ep, gives 

confirming that the extent to which the vortex lines accumulate on the axis depends 
on the relative strengths of the recirculation and the swirl. If E p  9 go, then a is much 
less than R. 

The diffusion timescale T ,  is of order a 2 / v ,  and so (17) gives 

where R is the Reynolds number f / v .  Whether o,r not diffusion has time to act 
depends on both Iw and the kinetic energy ratio E,/Ep.  For an inviscid analysis to be 
applicable, we require T,, & 7,. The stronger the recirculation (relative to the swirl), 
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FIGURE 7 .  Spiralling of the poloidal vortex lines by the recirculation (E, $ EB) .  

the more pronounced is the pile-up of vortex lines a t  the corners, and the greater the 
likelihood of appreciable diffusion. Equation (20) may be rewritten as 

which was the equation used in $1 to characterize the diffusion timescale for a 
concentrated vortex core on the axis. 

Note that (18) implies that, if Zp 9 ko (so that a < R), then the turn-over time will 
be much less than 7,. Consequently, if the initial recirculation is strong, a poloidal 
eddy will ‘turn over’ many times before the recirculation reverses direction. In  such 
a situation we would expect that the poloidal vortex lines will become highly 
spiralled and convoluted in the core of the flow. This is illustrated in figure 7. On the 
other hand, i fEp  - E@ (so that a - R), then the turn-over time is of the same order 
as r,, and we would not expect the same degree of stretching and twisting of the 
vortex lines. In  this case a situation similar to that shown in figure 6 may develop. 

From the discussion above i t  is clear that we may categorize the initial 
development of the flow according to the relative sizes of E p  and 8,. 

(a )  E ,  6 E ,  (strong swirl case; figure 5 ) .  Here we have standing waves superimposed 
on parallel poloidal vortex lines. There is no tendency for poloidal vortex lines to 
accumulate in the corners. 

(b )  E p  - Eo (swirl and recirculation of comparable size; figure 6). In this case the 
poloidal vortex lines do accumulate in the corners, although the characteristic radius 
into which the bulk of the vortex lines move, a ,  is a significant fraction of R. 
Reversals of the recirculation will occur in a t,ime r, which is of the same order as the 
turn-over time rt. 

( c )  EP B 8, (strong initial poloidal flow ; figure 7). The poloidal vortex lines pile up 
in corner regions of characteristic radius a, which is much less than R. Also, the 
reversal time r, is longer than the turn-over time, so that the vortex lines become 
stretched and convoluted. The diffusion time r, is reduced owing to the pile-up of the 
vortex lines, while the increase in spatial gradients in the interior may lead to 
Prandtl-Batchelor homogenization, which would tend to dampen any oscillations. 

We shall now quantify these estimates with an approximate one-parameter model 
of the oscillations. 
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5.2. A simple, one-parameter model of nonlinear oscillations 
Let us consider the idealized situation where the poloidal recirculation takes the form 
of a single eddy and, although its magnitude varies with time, its spatial distribution 
remains approximately constant. The stream function is even in r and zero on the 
boundary, so perhaps the simplest approximation for f? is 

where A(t)  is an unknown amplitude. We shall derive a differential equation for A(t) 
using (16), which we may rewrite as 

We start by converting the right-hand side of this equation into an expression 
involving only A(t) and the initial conditions. We do this by considering the history 
of fluid particles on the endwalls. Equation (21) gives 

u, = -A(t){(;)[l-(;)+os~)}. 

Now consider a fluid particle which lies on the endwall z = 1. Let its instantaneous 
position be rp(t) and its initial position be To. Then we may integrate this expression 
for ur, following the fluid particle, to give 

As the particle moves, it conserves its angular momentum r, and so 

from which, on the endwall z = 1, we have 

We may now substitute for the integrals on the right-hand side of (22). For 
convenience, we introduce the following constants which are determined by the 
initial swirl distribution : 

z =  I ,  t = 0 ,  

Then, evaluating $u;dr using (21), and substituting for the angular momentum 
integrals using the expressions above, we obtain the following integro-differential 
equation : 

(23) --A(t) K = Q:exp[ -i[A(t)dt]-Q:exp[ +i[A(t)dt], R 
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where K is the constant 
K=l+($). 2 

This equation involves only the unknown amplitude A(t )  and the initial conditions, 
as specified by Q, and a,. Moreover, i t  is not restricted to cases where the initial swirl 
is in a state of (almost) rigid-body rotation. For simplicity, we shall consider now the 
symmetric case, in which Q, = Q,. Then (23) simplifies to 

K -A(t) =-Qisinh 
2R 

This represents a mass-spring system with a restoring force proportional to 
Qisinh (x), where x is a displacement. 

For small-amplitude oscillations, (24) may be linearized to give 

4Q2 
A ( t ) + A A ( t )  = 0, 

K 

with an associated natural frequency of 

w, = 2QO 
[l + (4Z/nR)*]$' (25)  

For the particular case of rigid-body rotation, we may compare this with the exact 
solution for standing inertial waves in a cylinder. Analysis of (5)  shows that the 
fundamental mode, to which our analysis corresponds, has a natural frequency of 

6, = 3.83 
2 0  

0, = 
[ 1 + (6, Z/nR)2]i7 

which is very close to the approximate expression (25). (This frequency would be 
predicted exactly if the assumed function of radius in (21) corresponded to the 
fundamental mode for inertial waves.) 

We now integrate (24) to give a first-order equation. Noting that A has the 
dimensions of a velocity, we let V, be the initial value of A .  Then 

@ * ( t ) - " - - L  2 0 -  Q2R2{ cash [;l - A(t)d t  ] -1 } , 
K 

which could be integrated numerically to  give A(t ) .  However, the reversal time 7, 
may be estimated directly from this expression by putting A( t )  = 0, giving 

For small-amplitude oscillations (in the sense that V,, + R,R) this gives us 7, - Q;', 
which is consistent with (25). For large-amplitude oscillations, in which V, % R/7,., we 
obtain 

which is consistent with (18) and (19). 
Figures 8 ( a )  and 8 ( b )  compare the analytical model with the results of the 

numerical experiments described in $3. In  particular, they show the predicted 
variation in the maximum poloidal velocity, obtained by integrating (23). It can be 
seen that the model tends to overestimate the period of oscillation by up to 4%, 
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FIQURE 8. Comparison of the approximate analytical model with the numerical experiment 
described in 93. (a) Initial conditions given by (6); ( b )  initial conditions given by (7). 

while underestimating the size of the recirculation, by up to 20%. This error in 
estimating the magnitude of the recirculation is primarily a consequence of having 
assumed a simple shape function for y i .  

In addition to  the comparison above, it would be instructive to compare the model 
with laboratory experiments, such as those of Kojima et al. (1983). Unfortunately, 
there is insufficient data given in that paper to  afford such a comparison. 
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Thus we have a simple, one-parameter model for finite-amplitude oscillations in a 
cylinder. Of course, such an analysis is valid only for as long as the recirculation 
remains in the form of a single eddy, and even within this time period, the 
assumption that @ can be represented by (21) is a severe restriction. Nonetheless, it 
gives some insight into what occurs in t'he initial stages of the flow. 

6. Flows in which the swirl is zero on the boundary 
We shall now consider briefly flows in which f is zero on the boundary S. Although 

such flows will not, in general, exhibit oscillatory behaviour, they are of some interest 
because they possess a number of integral invariants. 

Note that, for r to be zero on S, for all t > 0, it is only necessary that r be zero 
on S at t = 0. This follows from the fact that T is  materially conserved, and that fluid 
particles initially lying on S, remain on S. 

Since the angular momentum r is the stream function for the poloidal vorticity, 
the boundary condition r = 0 implies that  the vortex lines are closed within the 
fluid. Let C, be a closed poloidal vortex line, defined by r= r,,, and let V, be the 
toroidal volume enclosed by C,. This is illustrated in figure 9. We shall examine a 
number of integral invariants associated with the volume V,.. The first thing to note 
is that V, is itself conserved, so that the function V,(Z"'), the variation of enclosed 
volume with r, remains constant as the flow evolves. 

Each volume V, possesses a number of integrals which are constant for purely 
kinematic reasons. For example, the integrals of w,  and w, throughout V'are both 
zero. More generally, the moments of vorticity are zero (see Truesdell & Toupin 
1960). However, we shall be concerned here with dynamic invariants. 

From the equations of motion (1) and (2) we may deduce 

Integrating this equation throughout V,, invoking the divergence theorem, and 
noting that T i s  constant on C,, we may show that there is a general invariant of the 
form 

where g and f are arbitrary functions o f f .  We shall consider three particular forms 
of (26). 

If we take g = 1 and f = 0, then we obtain 

so that the circulation in the (r,x)-plane, around C,, remains constant. (Note that 
this is not merely a restatement of Kelvin's circulation theorem, since this line 
integral remains in the (r,x)-plane, there being no contribution from the.) If up is 
initially zero, this implies that the recirculation cannot take the form of a single 
eddy. 

If we now take g ( 0  = r a n d  f = 0, then (26) gives us 
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FIGURE 9. Flow in which the angular momentum is zero on the boundary. 

This is reminiscent of the helicity integral 

H = Jvru - odV, 

which may be shown to be constant (Moffatt 1978). Let us divide H into two 
components, H,  and H,, defined by 

H ,  = J V r u , w e d ~ ,  H ,  = Jvrup - o,dV. 

Then (28) gives 
cw dH, dH -=-- -A=(). 
dt dt dt (29) 

The invariance of H ,  and H ,  is, in fact, a direct consequence of (27), combined with 
the conservation of helicity. This may be shown by integrating the identity 

to give H, = @ + nr, icr up * dr, 

” 

Hp = iH  - nf, f c r  up dr 

Conservation of He and Hp gives rise to further restrictions on the flow. For 
example, if we apply the Schwarz inequality to the integrals H ,  and H,,  taken 
throughout the flow field, then we obtain the following lower bounds for the 
components of enstrophy : 

The third form of (26) that we shall examine concerns only the swirl. If we take 
g = 0 andf = r, then we see that angular momentum is conserved in V ,  Let x be the 
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position vector ( r ,  0 , z ) .  Then, by expanding the axial component of x x (x x o) to 
give -x  - VT, we obtain the invariant 

x x (x x o) d V  = [ Jv;dV- r, Vr] kz. 

When V, = V ,  the entire flow field, this expression takes on the familiar form of the 
torque required to initiate the motion (Batchelor 1967). Equation (32) provides an 
additional lower bound on the enstrophy of the swirl. Applying the Schwarz 
inequality, we may show that 

Thus, flows in which r is initially zero on the boundary possess a number of 
invariants, most of which may be derived from the general form given in (26). I n  
association with the conservation of energy, these place significant restrictions on the 
manner in which the flow may evolve. 

It may be noted that there is a t  least one steady-state solution of the equations of 
motion which satisfies r = 0 on the boundary. This is 

$ = Ar J,(6,  r /R)  sin (mm/Z), r = a$, 

where u2 = (C?, /R)~ + (mn/Z)2. 
This is a Beltrami flow with o = au and is, in fact, the only possible axisymmetric 

Beltrami flow in a cylinder. However, such a flow could not be realized in practice, 
as viscosity determines the steady state. 

7. Conclusions 
In  general, an initially non-uniform swirl distribution gives rise to  a strong, 

oscillatory recirculation. Energy is exchanged between the swirl and the recircu- 
lation, the direction of transfer depending on the relative signs of $ and au,/az. 
Conservation of angular momentum imposes a limit on the amount of transferable 
energy, by creating a lower bound for the kinetic energy of the swirl. 

When the poloidal vortex lines intersect the endwalls, there is a tendency for the 
vortex lines to accumulate at the corners and on the axis. This is particularly the case 
when the swirl is weak, and leads to accelerated local diffusion on the axis. 

An elementary, one-parameter model is proposed for the nonlinear oscillations. 
This predicts that the flow behaves like a mass-spring system with a nonlinear 
restoring force proportional to Qisinh (x), where 2 is a displacement. This allows 
estimates to be made of the reversal time for the recirculation. 

When the swirl is initially zero on the boundary, the flow possesses the general 
integral invariant 

where g and f are arbitrary functions of r, and V, is the volume enclosed by a poloidal 
vortex line C,. This, in turn, implies the constancy of the helicity-like integrals H ,  
and H ,  and of the circulation, fc,up*dr. 

The author is grateful to  A. J. Mestel for some useful comments on the original 
manuscript and to F. Boysan for his assistance with the computations. 
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